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This is a study of the magnetohydrodynamic flow of an incompressible viscous 
fluid between coaxial disks, with a uniform axial magnetic field B. The fluid 
has density p, viscosity 7 and electrical conductivity IY. The flow is assumed to 
be steady, and to be similar in the sense that the radial and tangential components 
of velocity increase linearly with radial distance from the axis of rotation. Most 
of the work is concerned with disks which are electrical insulators, one of which 
rotates while the other remains stationary. The imposed conditions can then be 
represented by the Reynolds number R = pi2,d2/7 and the Hartmann number 
M 2  = aB2d2/q, where Qa is the angular velocity of the rotating disk and d is the 
gap between the disks. Asymptotic solutions are given for R Q M2,  and numerical 
solutions are obtained for values of R and M 2  up to 512. Experimental measure- 
ments are presented which are in general agreement with the theoretical flows, 
and the results for small values of the Hartmann number provide the first known 
experimental support for the purely hydrodynamic solutions in the range 
100 < R < 800. 

1. Introduction 
The steady flow of an incompressible viscous fluid between two infinite co- 

axial disks presents one of the few situations for which exact solutions of the 
Navier-Stokes equations have been obtained. Hydrodynamically, it is a two- 
parameter problem, with given conditions represented by (a) the ratio of the 
speeds of rotation of the disks (which may rotate in the same or the opposite 
sense, or one may be at  rest), together with ( 6 )  the Reynolds number R, based on 
the gap between the disks (see equation (2.35)). Primary and secondary flows are 
set up in three dimensions, and the assumption is made that the flow is similar, 
in the sense that vr = r x function of z and vg = r x function of x .  

The topic was first discussed by Batchelor (1951), who generalized the outward- 
flowing boundary-layer solution of von KBrm&n (1921) and the inward-flowing 
solution of Bodewadt (1940), for single disks, and speculated on how they could 
be matched for the flow between two disks. The problem was pursued by 
Stewartson (1953), and subsequently numerical solutions were obtained by 
Lance & Rogers (1962)) by Pearson (1965)) and by Mellor, Chapple & Stokes 
(1968), who also made measurements of the flow for small values of the Reynolds 
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number (R 6 150). Other experiments have been done for large Reynolds 
numbers (R > 800) by Picha & Eckert (1958) and by Maxworthy (private 
communication). A review of some of this work has been presented by Rott & 
Lewellen (1  966). 

For the case when one disk is at rest the main results may be summarized as 
follows. (i) For large values of the Reynolds number there are exact solutions 
which give an outward-flowing layer on the rotating disk and an inward-flowing 
layer on the stationary disk, separated by a layer containing uniform rotation 
and uniform axial flow. These solutions may be constructed by matching two 
boundary-layer solutions for single disks. The speed of rotation in the central 
region is approximately 0*31Q,, where Q, is the speed of rotation of the spinning 
disk. (ii) For smaller values of R ( <  300 approximately) the numerical results 
show a continuous and sometimes complicated variation of velocity between 
the disks; these solutions cannot, therefore, be built up from two boundary 
layers. 

The present paper is concerned with the extension of this problem to the 
magnetohydrodynamic case, in which the fluid is an electrical conductor, and 
there is a uniform imposed axial magnetic field B. The disks may also be electrical 
conductors (and make electrical contact with the fluid). It now becomes necessary 
to  specify three more parameters, in addition to (a) and (b)  above, which may be 
(c) the Hartmann number M 2  (see equation (2.36)), (d) a conductance parameter 
for the lower disk, and (e) a conductance parameter for the upper disk (see 
equations (2.30) and (2.32)). 

The effects of the magnetic field will be complicated. Non-uniformity of 
angular velocity will set up radial currents j, which will produce a tangential 
body force - Bj,. This will modify the distribution of angular velocity, and 
hence indirectly the secondary flow. Similarly radial motion will induce currents 
-js, and an opposing body force - Bj,. 

This paper is concerned with similarity solutions for this problem. Un- 
fortunately the solutions cannot now be exact, owing to an induced magnetic 
field which increases with radius. It turns out, however, that there can be an 
appreciable region around the axis of rotation where the induced field is negligible, 
and similarity flow can therefore be obtained. (For a proof of this, see Stephenson 
1967, chapter 3). 

Previous work on the topic will be discussed in $ 3 ,  after derivation of the 
equations of motion. 

2. Formulation of the problem 
Consider the situation depicted in figure 1. A uniform incompressible fluid, 

having density p,  viscosity 7 and electrical conductivity G, is bounded at  z = 0 
and z = d by two large disks of radius a ,which are uniform in r and 8 and have 
thickness t, and to and conductivity G,(x) and crb(z) .  The disks make contact with 
the fluid between them, but are electrically isolated from the environment. They 
rotate with angular velocities Q, and f i b .  (We impose the condition that 
I fib1 < Q,.) There is a uniform imposed axial magnetic field B. 
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With the usual MHD approximations, and the assumption of steady flow, the 
governing equations are: 

p(v.V)v = -gradp++V2v+j x B, (2.1) 

divv = 0,  (2.2) 

d i ~ B  = 0, (2.3) 

curl B = pu(E + v x B), (2.4) 

curlE = 0. (2 .5)  

j = (l/p)curlB = u(E+vxB) ,  (2.6) 

and consequently : div j = 0. (2-7) 

(See, for example, Shercliff 1965, p. 24.) It is also convenient to write 

a 

FIQURE 1. Physical model and co-ordinates. 

Imposing axial symmetry, and using curlE = 0, we get 

E, = 0 everywhere. (2.8) 

We assume that the induced field b < B (requiring essentially that the magnetic 
Reynolds number based on radius a should be small: see Stephenson 1967). 
Then B = $I?, and 

j, = --Bur, (2.9) 

j, = VE,. 
Finally, we make the similarity substitutions : 

v, = r x function of z, 

v, = r x function of z ;  

whence, using divv = 0,  we get 

v, = function of z. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

It is now possible to derive the equations of motion without making any addi- 
tional assumptions. 

22 Fluid Mech. 38 
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Using the substitutions above, the tangential equation of motion may be 
written: 

(2.14) 

The terms on the left-hand side of this equation are all functions of z only, and 
therefore, using (2.6): 

j ,  = u(E, - Bv,) = r x function of z. (2.15) 

Using div j = 0 we get: 

a .  i a  
-3 = - - - (rj,) = function of z, a x  r ar 

(2.16) 

whence j, = uE, = function of r + function of z. (2.17) 

This holds for any value of z which lies in a conducting medium, whether the 
medium be the fluid or a conducting disk. 

Now consider a surface where a conducting medium adjoins a non-conducting 
medium. Such surfaces exist (u) between the conducting fluid and an insulating 
disk (if present), and (b)  between a conducting disk (if present) and the en- 
vironment (at z = - t ,  or z = d + ta). It can be seen that there will always be at 
least one surface of this kind. (In fact there are always two.) At such a surface 
we have j, = 0, and therefore in the conducting medium 

j, = uEz = function of z. (2.18) 

From curl E = 0 we obtain 
a a 
- E, = - E,., 
ar az 

E, = function of r .  

E, = r x const. Hence, with (2.15), 

(2.19) 

(2.20) 

(2.21) 

By similarly considering any other surface which may exist between this medium 
and another conducting medium, it can be shown that these relationships hold 
throughout all conducting media which may be present. The following relation- 
ships are therefore general, wherever u > 0. 

E, = r x const = (say) -xB!&r, 

E, = function of z, 

j ,  = rB(ve-X%r),  

Ee = 0, 

j ,  = - ~Bv , ,  

j ,  = aE, = function of z. 

Integrating (2.25) between z = - t, and z = d + t,, and putting 

we get 

rtb j ,az = 0, 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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This dimensionless quantity x denotes the strength of the induced radial electric 
field E,. It is proportional to the average angular velocity of the disks and fluid, 
weighted according to their thickness and conductivity. Now let 

s = 1::" a(z)dz,  

and define dimensionless parameters of conductivity: 

S, = '1' u,(z)dz (lower disk), 
8 -t. 

ud 
Sj = - (fluid), 

S 

1 d+ta 

S d  
S, = -1 mb(Z)dz (upper disk); 

then from (2.28) it can be shown that 

where o, is the average angular velocity of the fluid. 
Finally we define dimensionless parameters : 

s = zld,  

R = pSl,d2/q = Reynolds number based on gap between disks, 

M2 = aB2d2/q = Hartmann number; 

v+- = rQuF(C), ve = rQZ,G(S), = dQuH(C), 

p = qQ,P(C) + *npap. 

and substitute: 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

We then obtain the equations of motion in the following dimensionless form: 

F" = R(F2-  G2 + F'H + A )  + M2F, (2 .39)  

c" R ( 2 F G + G r H ) + M 2 ( G - ~ ) ,  (2.40) 

H ' + 2 F  = 0, (2.41) 

Q' = G ;  
with boundary conditions: 

(2.42) 

F = H = & = O ,  G = 1  at y = O ,  (2.43) 

Here dashes signify differentiation with respect to 5, and the variable Q(b) has 
been introduced in order to incorporate the final boundary condition. The 
pressure term P(C) is given by: 

P = -2F-+RH2+(say ) IT .  (2.45) 
22-2 
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If the equations remained valid to the edge of the disks at r = a, the torque on 
(say) the lower disk would be: 

T, = Q , U ~ ( ( ~ / C Z )  G’(0) - (1 - X) B2sS,}. (2.46) 

Before attempting to relate these equations to a real flow, we shall examine 
the assumptions which have been made in deriving them. It will, however, be 
convenient to postpone this until $ 6 ,  after the solutions have been presented. 

3. Previous work 
The magnetohydrodynamic flow between two disks was analyzed by Srivi- 

stava & Sharma (1961)) who imposed the condition that one disk be stationary 
and that the Reynolds number R < the Hartmann number M 2 .  They obtained 
formal expansions for P, G, H and h in powers of R, evaluated the first terms, and 
examined the torque on the stationary disk. Unfortunately they omitted the 
term M2x from (2.40), with the results (i) that their expansions are valid only 
if the stationary disk is a perfect conductor, or has infinite thickness (and is not 
an insulator), and (ii) that their expression for the torque is completely erroneous. 

Several writers have examined the magnetohydrodynamic flow over a single 
disk. Rizvi (1962) looked at this problem with a weak magnetic field. Unfortu- 
nately he supposed the disk to  be a perfect conductor, which yields an indeter- 
minate radial electric field, and the boundary conditions he gives are incompatible 
with his equations. Sparrow & Cess (1962) studied the case of an insulating disk 
rotating in fluid which has no angular velocity a t  large axial distances from the 
disk, and they obtained the solution by numerical integration. Kakutani (1962) 
solved the identical problem by joining two expansions. 

Finally, King & Lewellen (1964) analyzed the behaviour of rotating fluid over 
a stationary surface, with and without an axial magnetic field. They obtained 
results by means of numerical integration, for w, cc rn, where - 1 < n < 1. They 
found that the magnetic field tends to reduce radial flow and damp out variations 
in angular velocity. 

4. Asymptotic solutions for R < N 2  
The equations (2.39)-(2.42) may be rewritten as 

R 
- ( F 2 - G 2 + F ‘ H + h ) - - + F  = 0, 
M2 M2 

R G” 
- (ZFG+G’H)--  + ( G - x )  = 0, 
M2 M2 

H ’ + 2 F  = 0, (4.3) 

&‘-G = 0. (4.4) 
If we consider the case of R < M 2 ,  and substitute N = M2/R, the unknown 
quantities may be formally expanded in powers of 1/N,  as follows: 
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1 1 
G(!3 = go(S) + 3 S l ( S )  + p g 2 K )  + * * - 2  

H(5)  = h&<) + 3 hdC) + r2 h2(C) + -. ., 

Q(6) = qo(6) + 3 Pl(C) + N2 42(C) + . - * 7 

(4.6) 

(4.7) 

(4.8) 

1 1 

1 1 

1 1 

1 1 

h = ho+-hl+-A2+ N N2 ..., (4.9) 

x = X o + ~ X l + p X z + . . .  , (4.10) 

Substituting these into (4.1)-(4.4) and equating terms of order l/No, 1/N we 
get the first two sets of equations as follows. 

90" - - + g o - x o  = 0,  

h; + 2f0 = 0, 

M2 

q ; - g o  = 0; 
with boundary conditions : 

fo = ho = qo = 0, go = 1 at 5 = 0, 

hi + 2fi = 0, 

q;-g1= 0; 
with boundary conditions: 

fl = g ,  = h, = q1 = 0 at < = 0, 

f, = g1 = h1 = 0, q1 = x l / X ,  a t  6 = 1 

It is easy to show that 

fo = h, = g ,  = q1 = 0 everywhere; 

and the equations (4.12) and (4.14) yield the solution 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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where Y = sinh M and %' = cosh M .  Equation (4.25) may be recognized as that 
governing Hartmann flow between two parallel plane surfaces possessing a steady 
relative velocity in their own plane. The effects of rotation have, therefore, 
not yet appeared. 

The next non-zero terms are A,, fi and h,, which can be obtained from (4.17) 
and (4.19). The explicit solution is, however, complicated, and will not be given 
here. Instead, profiles of go(6) andfi(6) are shown in figure 2, for the case when 
both disks are insulators, and one of them is at rest (i.e. X, = 8, = i&, = 0). 

go fi 
FIGURE 2. Profiles of tangential and radial velocities for R < M 2 +  25. 

These same solutions hold for the case of R < 1, whatever the value of M. 
(This can be shown by replacing (4.5)-(4.10) by expansions in powers of R, and 
using (2.39) and (2.40) in place of (4.1) and (4.2): cf. Srivistava & Sharma 1961.) 
Thus the solution for M = 0 is the limit of the hydrodynamic solutions as R -+ 0. 
In  fact, the validity of these asymptotic solutions seems to extend much further 
still, and comparison with the numerical results described in the next section of 
this paper indicates that they lie close to the exact solutions provided only that 
R < M2 + 25. (This is an approximate limitation, obtained empirically.) 

Other points relating to the results are as follows. (a )  As M increases the central 
layer tends towards uniform rotation; also the radial flow decreases, and what 
remains of it becomes concentrated in boundary layers of thickness 6 cc 1/M. 
(b)  The profiles forfi show distinctly different shapes for the inward and outward 
flowing layers. It is this which accounts for the slight inward drift which appears 
in the central layers, ( c )  For M = 0, it  can be shown that A, = 0.3, which agrees 
with the value of A obtained from solutions of the hydrodynamic problem for 
R 3 0; and for M --f co, it can be shown that A, = 0.25, which corresponds to 
solid body rotation, with 0 = 0-5. 
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5. Numerical solutions 
From now on in this paper we shall be concerned only with insulating disks, 

one of which is stationary, i.e. 8, = s b  = f i b  = 0. (These are the same conditions 
as those applying to the profiles of figure 2.) In this case 

average angular velocity of fluid 
= (say)G,,. (5.1) 

Qa 

(It turns out that this is a useful quantity for making comparisons with experi- 
mental measurements : see Q 7.) It is necessary to use numerical methods to obtain 
solutions for the general case, with arbitrary values of R and M2.  The method 
which was used will be briefly described. 

The equations (2.39)-(2.42) are rewritten as six first-order differential equa- 
tions, and integrated by the fourth-order Runge-Kutta process, with rounding 
error correction. The integration is done in two parts, starting at  the inner 
surface of each disk and meeting at  an intermediate point in the fluid, so as to 
avoid integrating ‘backwards ’ through either boundary layer. To start the 
integration from 6 = 0 it is necessary to have estimates for f’(O), g’(O), h and x ;  
and to start from 5 = 1 it is necessary to have estimates for f’( l), g’( l), A and x. 
Unless these six estimates are all correct, there will in general be six matching 
errors where the integrations meet. 

Each of the six estimates, or ‘starting values ’ , is incremented in turn, and 
the corresponding changes in matching errors are obtained as a 6 x 6 matrix. 
Linear relationships are assumed between the matching errors and the starting 
values; on this basis the starting values are adjusted so as to eliminate the errors, 
and the integration is repeated. In  practice some errors usually remain, and the 
cycle is continued until they have been reduced to an acceptable level. 

Unfortunately this process of ‘ convergence ’ towards the solution will in general 
succeed only if the estimates are all fairly accurate. In  this problem it was found 
that initial errors in the estimates of about 1 part in lo4 could (in some cases) 
cause the process to diverge, away from the correct solution. A method was there- 
fore developed for building up a series of solutions, for increasing (or decreasing) 
values of R or M2,  so that estimates for the starting values could be obtained 
automatically by extrapolation from the previous few solutions in the series. 
If at any stage the extrapolated estimates were not good enough to yield con- 
vergence, one or more intermediate solutions were obtained, between the last 
one found and the one now required, so that the estimates could be improved. 

This method worked well, and a network of solutions was obtained for 
1 < R < 512,O < M2 d 512. In  principle, all the solutions could be built up from 
any one given set of starting values, which could, for example, be obtained from 
one of the asymptotic solutions of the last section. In fact, the solutions were 
initiated from several different points, using data for the hydrodynamic problem 
which were deposited by Lance & Rogers (1962) at the Royal Society. 

A summary of the results is presented in figures 3-6. The f i s t  three of these 
give profiles of F ( [ )  and G(C) for three values of the Reynolds number R and 
various values of the Hartmann number M2. It can be seen that the main effect 
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of a weak field is to iron out variations in the main body of the fluid; and that 
a strong field (for which M2 > R) produces a substantial reduction in the radial 
flow. As R or M 2  increase above about 300, a layer of uniform rotation appears 
in the main body of the fluid, and radial velocities become confined to the 

G F 

FIGURE 3. Profiles of tangential and radial velocities for R = 83. 

1 
t 

0.5 

0 
0 0.4 1 -0.1 0 0.1 0.2 

CT F 

FIGURE 4. Profiles of tangential and radial velocities for R = 176. 

boundary layers. In  the limit, for large values of R or M2, the velocity profiles 
could be constructed from the appropriate boundary layer solutions, and would 
yield boundary layers for which the thickness 

or 

6 cc 1/Rt for R B M2, 

S K 1/M for M2 & R. 
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Figure 6 shows the variation of x (or Gav) with z/R for various values of M2. 
For RIM2-+ 0, it can be seen that x -+ 0.5, which is in agreement with the asymp- 
totic solutions of the last section; and for R/M2-+oo, it can be shown that 
x -+ 0.31 approximately. For M = 0, passes through a minimum of 0.2615 
at R FZ 83 and a maximum of 0-3741 a t  R FS 671. This is thereason why profiles are 
shown for these particular values of R. 

r '  

0.5 

0 

0.5 

0.4 

h 
i, ' 0.3 II 

v 

0 0.4 1 -0.1 0 0.1 0.2 

G P 

FIGURE 5. Profiles of tangential and radial velocities for R = 512. 
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I I I n 
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FIGURE 6. x (or Ct,,) versus JR. 
4R 

6. Realization of similarity flow 
In  this section we consider in more detail some of the assumptions which were 

made in $2,  and we discuss the practical difficulties is realizing the similarity 
solutions which have been presented. 
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6.1. Possibility of non-similarity solutions 

In  the case of the flow over a single disk, dimensional arguments can be used to 
show that the only possible steady solutions are similarity solutions (in which 
v, = r x function of z and vg = r x function of x ) .  These arguments cannot be 
applied to the flow between two disks owing to the existence of the scale length d, 
and it is in principle possible for there to be steady solutions in which the velocity 
varies in a complicated way with r,  8 and x .  It is not known whether such solutions 
exist, or (if they do) whether they are stable. 

6.2. Other kinds of similarity solution 

It is known from Mellor et al. (1968), and from other work by the present writer, 
that at least one of the solutions presented in the last section is not unique. For 
R = 512, M = 0, other similarity solutions exist in which some of the fluid rotates 
in the opposite sense to the spinning disk. It seems almost certain that this kind 
of flow could be established in practice only if the conditions at  the edge of the 
disks particularly favoured it (see below). 

6.3. Edge effects 

It has sometimes been assumed that the conditions at  the edge of the disks will 
have a negligible effect on the flow near the axis provided that the ratio a/d is 
sufficiently large. Yet according to the similarity assumptions, v, and Vg are 
proportional to r ,  so that any defects in radial or tangential momentum due to 
the geometry at the edge will increase indefinitely with a. Nevertheless, the 
assumption seems to be reasonable for an outward-flowing layer, since the out- 
ward motion is set up by centrifugal forces, and will at any radius be dominated 
by events at  smaller radii. But the initiation of inward flow is more complicated: 
it must occur somewhere near the edge of the disks, and there may be conditions 
in which it depends crucially on the conditions in this region. 

It would be possible, for theoretical argument, to suppose that a system of 
pumps and ducts was set up around the edge of the disks, and was adjusted to 
give the flow required by the appropriate solution at  the radius a. Then provided 
that the solution was stable, it should be possible to sustain the flow between 
the disks. It is, however, more realistic to consider (i) disks surrounded with 
a fixed cylindrical shroud, or (ii) unshrouded disks immersed in a stationary fluid. 
The following points apply to these situations. 

(a)  In  the similarity solutions (of the kind considered here) the main body of 
fluid possesses an axial velocity towards the rotating disk. In  the presence of 
a shroud, however, there must be (owing to continuity) an extensive region 
around the edge of the disks where the axial flow is reversed, and where simi- 
larity flow cannot therefore occur. Similarly it is possible to show that for M =k 0 
there is an axial current which must also be reversed around the edge of the disks. 

(b)  In  the similarity solutions (of the kind considered here) there are ap- 
preciable tangential velocities in the inward-flowing boundary layer. Consider 
the origin of these velocities, first when there is no magnetic field ( M  = 0). There 
is little difficulty in the presence of a shroud, for the fluid around the edge will 
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have been supplied from the outward-flowing layer and will already possess 
tangential momentum. (See Rogers & Lance (1964) on the growth of an inward- 
flowing layer on a stationary disk.) But in the absence of a shroud it is not clear 
how these tangential velocities could be set up. In fact the reported experiments 
indicate that an approach to similarity flow (of the kind considered here) is 
obtained in practice only if there is a shroud; otherwise the bulk of the fluid 
remains almost stationary and an inward-flowing boundary layer does not 
develop (see Stewartson 1953; Picha & Eckert 1958). A magnetic field is likely 
to alleviate this problem, for it provides a body force which can be the source 
of tangential velocities well away from the rotating disk. 

( c )  For X = 0, and in the absence of viscosity, the Raleigh criterion for radial 

instability is that a 
0 > - (Two). 

ar 

There are bound to be regions around the edge of the disks where this condition 
will be fulfilled and where (therefore) steady flow is unlikely to be supported. 
(This problem could be overcome by using a rotating shroud. This was tried 
by Maxworthy (private communication) but it apparently produced some singular 
effects at r + 0.) 

These edge effects are complicated, and are not amenable to easy analysis. 
In practice it seems best to use a stationary shroud, and to set a/d reasonably 
large (but see below). 

6.4. Stability and turbulence 

In  the equations governing similarity flow (namely (2.39)-(2.42)), radial and 
tangential dependence have been specifically excluded; and it follows that, 
whatever method may be used to obtain solutions, it cannot provide any direct 
information on their stability to three-dimemional disturbances. We may note, 
however, that even a solution which was stable near the axis would in practice 
cease to remain so beyond some critical radius, owing to the onset of turbulence. 

At first sight we may expect the flow to become turbulent when R, = pSZar2/q 
(Reynolds number based on radius) exceeds some critical value. In  an outward- 
flowing layer, however, the conditions at  any radius will be dominated by events 
at smaller radii, where R, is smaller, and this will have a stabilizing effect upon 
the flow. Laminar flow has in fact been reported in outward-flowing layers having 
values of R, exceeding 3 x 105. In  an inward-flowing layer, on the other hand, 
conditions are dominated by events at  larger radii, where R, is larger, and stability 
may be difficult to achieve. Despite this, there have been a number of apparently 
successful experiments on laminar flow between two disks (reported elsewhere 
in the literature, and in the next section of this paper) which have had values of 
R, rising to over lo6. 

7. Experiments 
Measurements were made on the flow of mercury between insulating disks, 

one of which rotated while the other was held at  rest. The heart of the apparatus 
is shown in figure 7. The disks were made of ‘Tufnol’, a smooth impregnated 
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paper laminate, and the working space between them was loin. in diameter. 
The lower disk rotated a t  a speed of between 0 and 12radians/sec. Astationary 
shroud, also made of Tufnol, was fixed to the upper disk, For reasons of mechanical 

/ >urFaces of disks 
I Shroud 

FIGURE 7. Experimental apparatus. (a )  Elevation of disks, shown separated. 
( b )  Underside view of upper disk, showing positions of probe wires. 

stability there was an insulated brass peg projecting downwards from the centre 
ofthe upper disk and bearing in an axial hole in the lower disk. (The influence of 
this peg on the flow is likely to have been negligible, and will be ignored.) Through 
the upper disk there passed 14 pieces of 20s.w.g. palladium wire, laid out as 
shown in figure 7 ( b ) ,  having exposed tips flush with the surface of the disk. The 
space between and around the disks was filled with mercury, and the gap between 
the disks could be adjusted between 0 and 0.7in. 

The apparatus was mounted in a large electromagnet which produced (for 
these experiments) an axial field of up to 0.11 Wb/m2. Sheets of armature steel, 
fixed behind the disks, maintained a uniform field between them. At 15 "C the 
physical constants for mercury in m.k.s. units are p = 1.36 x lo4, 7 = 1.58 x 10-3 
and = 1-05 x 106. Thus for d = 0*5cm, a, = lrad/sec and B = 0.1 Wb/m2, 
we get R w M 2  w 200. 
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Palladium was used for the probe wires because it exhibits approximately the 
same thermo-electric potentials as mercury. The voltages between the probes 
were measured with a bridge and reflecting galvanometer. According to the 
theory of Q 2,  E, = 0 everywhere, and the potential difference between two wires 
situated at  radii r1 and r2 will be 

Hence 

(see equations (2.23) and (5.1)). All the quantities on the right-hand side of this 
equation can be set or measured, and the experimental values of x (or G,) ob- 
tained from here can be compared with theory. 

0 0.2 0-4 0.6 - 1 

rla 

FIGURE 8. Radial dependence of electric potential. Curve (a) : R N 1000, 
M2 - 100, ald = 25.4. Curve (b): R - 180, M a  - 12, a/d = 25.4. 

Figure 8 shows the measured dependence of ,lV on radius, which is linear for 
true similarity flow. Two results are given, for R B M2,  which is likely to be the 
most difficult case. It can be seen that the slope of the curves increases slightly 
with radius, indicating that the mean rotation of the fluid was greater towards 
the edge of the disks than near the axis. There is, however, reasonable linearity 
within r/a < 0.6. (The vertical scale on this graph is arbitrary. Also, the potentials 
at r = 0 have been estimated by extrapolation from the probe readings at  
r /a  = 0.1. These readings then cease to contain any independent information, 
and are omitted from the graph.) 

The main results are given and compared with theory in figure 9. The full 
curves have been obtained from the numerical solutions, or by interpolation 
from them. The broken lines show approximate extensions for large values of 
R and M2,  beyond the range of the numerical solutions. They are based on 
curves, for R and M2 < 512, having the same ratio of RIM2. These curves are 
slightly modified at large values of R to make approximate allowance for the 
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fact that Ga,,+ 0.31 as R+ 00 (cf. G,," = 0.3316 at R = 512, M = 0; and 
G,, = 0.3279 at R = 1024, M = 0). 

The experimental points have been obtained from probe readings, using 
equation (7.2). In all these cases the readings were taken between the three inner 
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FIUTJFLE 9. Main experimental results, compared with theory. 0 ,  experimental points; 
-, from numerical solutions ; - - -, approximate extrapolation from numerical solutions. 
Curve (a): &I2 N 1.7, a/d = 25.4. Curve ( b ) :  M Z  = 12, a/d = 25.4. Curve (c):  M2 = 50, 
a/d = 25-4. Curve ( d ) :  M 2  = 200, a/d = 12.7. Curve ( e ) :  Ma  = 800, a/d = 12.7. 

probes and the three probes at  a radius of 3 in., which were connected via resistors 
so as to yield a mean potential difference. This gives a measure of the fluid 
rotation inside r = 3in., i.e. inside r/a = 0.6. 

The probe readings were never entirely steady: they usually wandered through 
1 yo or 2 % of their mean values, and occasionally drifted by up to 5 yo. A point on 
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the graph generally represents the average of between 4 and 20 actual readings, 
with minor corrections to allow for unavoidable drift of the magnetizing current 
and the speed of rotation of the lower disk. The error bars which are given may 
be taken to show roughly 95 % confidence limits. The greatest possible errors 
occur for the smaller values of R and M ,  owing to the fact that the measured 
voltages fall to less than 2pV. 

It can be seen that the experimental results are in over-all agreement with the 
theory. There is, however, a need for caution on two points. (a)  Significance can 
be attached only to the goodness of fit between the shapes traced out by the 
experimental points and the shapes of the theoretical curves, and not to the 
over-all level of the points. This is because there was no direct and accurate means 
of measuring the strength of the magnetic field during the experiments, and it 
was therefore estimated from the probe readings themselves, by finding that 
value which gave the best agreement between measurement and theory for 
large values of the Reynolds number R, where the measured voltages were 
greatest, and generally most accurate, and where the theoretical curves for x 
become fairly level, approaching 0.31. (b)  The fact that the measured and 
theoretical values of x agree fairly well does not guarantee that the velocity 
profiles were necessarily in agreement. In  the case (for example) of R 3 M 2  it is 
possible that the inward-flowing layer succeeded in transporting the right amount 
of fluid, and in ejecting it with the right tangential velocity, while failing to 
exhibit the undulating characteristics of the theoretical solutions. 

It is unfortunate that there was no direct and accurate way of measuring the 
magnetic field during the experiments. This situation arose because a t  the time 
the apparatus was designed it was expected that the field would be a sufficiently 
repeatable function of the magnetizing current (which was measured). Subse- 
quently, measurements on the magnet showed that this was not in fact the case. 
It may, however, be stated that the fields deduced from the probe readings are 
all compatible with the measurements of the magnetizing current. 

Despite the limitations, it seems safe to conclude that, given the experimental 
conditions used here, there was a definite disposition in favour of the theoretical 
similarity flows. (In figure 9 the only significant deviation between experiment 
and theory occurs for M2 = 1.7, in the region of R = 176, where the theoretical 
velocity profiles display a positive tangential velocity gradient in the body of the 
fluid, which may be difficult to obtain in practice.) So far as is known by the writer, 
the results for M2 < 12, which show a definite minimum and maximum in 2, 
provide the only approach to an experimental confirmation of the purely hydro- 
dynamic similarity solutions for values of the Reynolds number in the range 
100 < R < 800. 

The author wishes to express his appreciation to Dr M. D. Cowley for numerous 
helpful discussions during the course of this work. 
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